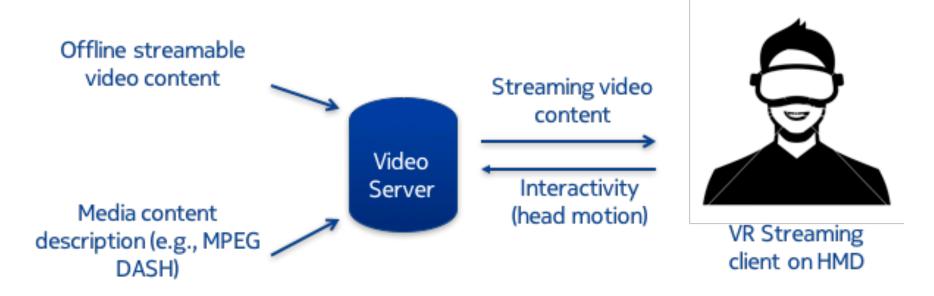
Optimized Viewport Dependent Streaming of Stereoscopic Omnidirectional Video

D. Naik, **Igor D.D. Curcio**, H. Toukomaa

Bell Labs Distinguished Member of Technical Staff

Media Technology Research, Nokia Technologies, Tampere (Finland) Email: igor.curcio@nokia.com

© Nokia 2015


NOKIA

Packet Video Workshop (within the ACM Multimedia Systems Conference), Amsterdam, Netherlands, 12 June '18

Outline

- Viewport Dependent Streaming
- Stereoscopic Omnidirectional Video
- Two subjective quality experiments
 - Streaming rate reduction with asymmetric video quality in foreground view
 - Streaming rate reduction with asymmetric video quality in background view.

E2E system for streaming omnidirectional video

Problem

- There are new (?) challenges for 360-Degree video, compared to traditional 2D video:
 - The **bandwidth** required for streaming 360-Degree video is huge
 - ...but luckily only a "viewport" of the whole omnidirectional space can be viewed by users at any point of time.

Viewport-Dependent Streaming

 Stream at high quality only what (i.e., the viewport) can be seen by the Head Mounted Display (HMD) Field of View (FoV). Stream everything else at lower quality.

– Suffers from increased latency.

• This strategy allows a great bandwidth saving, compared to *viewport-independent* streaming, where the 360-degree content is streamed at high quality, with theoretical no latency at the cost of a greater bandwidth requirement.

Viewport-Dependent Streaming

- Two key parameters:
 - Viewport size: too large size requires more bandwidth; too small size requires too many viewport switches in case of head motion, and may reduce the perceived video quality

 Motion-to-high-quality delay: the elapsed time between the head motion to an area outside of the viewport, and the subsequent system reaction to display a refreshed highquality viewport on the HMD. Must the the shortest possible.

Viewport-Dependent Streaming

• This technology has been **standardized** in

- MPEG: Omnidirectional Media Format (OMAF)
- 3GPP: TS 26.118 "3GPP Virtual Reality Profiles for Streaming Applications"
- VR-IF: Guidelines

Stereoscopic Omnidirectional Video

- A pair of views consume a large bandwidth, compared to monoscopic video.
- It is possible to take advantage of the properties of the Human Visual System (HVS)
- Suppression and fusion theories: if the two eyes is given asymmetric quality (e.g., quantization-based or spatial resolution-based), the HVS is capable of perceiving a fused quality which is closer to the higher-quality image, partially suppressing the lower quality one.

Stereoscopic Omnidirectional Video

- For saving streaming bandwidth it is possible to apply this concept to omnidirectional video that makes use of VDS
- There are new interesting combinations of asymmetric video quality for
 - Left, right views in VR
 - Foreground, background views.

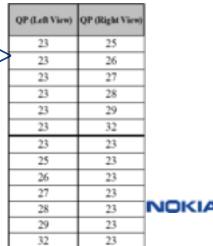
Subjective Quality Assessment Procedure

- Pre-screening of test subjects is important.
- For assessing video quality we used Absolute Category Rating with Hidden Reference (ACR-HR)
 - Sequences shown in random order
 - One of the sequences is used as hidden reference
 - Fractional scale 1..5.
 - Differential Mean Opinion Score (DMOS) for data analysis.

Subjective Quality Assessment Procedure

- Each test was not exceeding 1 hour (30 min. max wearing the HMD)
- Typical session structure:
 - 1. Instruction
 - 2. Pre-visual fatigue questionnaire
 - 3. Training session
 - 4. Viewing session(s)
 - 5. Post- visual fatigue questionnaire

Two experiments


- Aim to reduce the streaming bit rate in the **foreground** view (visible tile(s)) by using asymmetric video quality
 - Eye dominance invariance was also assessed
- Aim to further reduce the streaming bit rate in the background view (non visible tile(s)) by using asymmetric video quality

Settings (both experiments)

- Client with Samsung Galaxy S8 + Gear VR 2016 HMD
- E2E system was MPEG-DASH compliant with the needed VR extensions
- Streaming over WLAN 802.11 ac tri-band AP
- Equirectangular panorama video with 4K resolution (3840x1920 pixels) encoded with HEVC at 30 fps.

First experiment

- Adventure sequence (Bear) and music video clip (Kids) both 20 sec. duration. 9 test subjects.
- We wanted a score only in the foreground view (we did not want VDS effects because of head turns)
 - Tile of 180 degrees horizontal and 111 degrees vertical sizes . Removed the top and bottom tiles (34.5 degrees each).
- List of QP values for FG left and right views >

Second experiment

- Adventure sequence (Bear) and military sequence (Jet) both 20 sec. duration.
- Foreground tile 120 degrees and 240 degrees background tile horizontally.
 - Vertical sizes were as the first experiment.
 - No top and bottom tiles removal.
 - VDS active with 1s DASH segments.
 - No asymmetric quality for the foreground tile.
- List of QP values for foreground and background left and right views:

Foreground QP (L and R Views)	Background QP (Left View)	Background QP (Right View)
24	27	27
24	27	28
24	27	29
24	27	30

Results (first experiment)

• Bit rate savings for foreground tile asymmetry: 30% for 4.4 DMOS (all DMOSs are averaged considering the "dual" case). Useful for adaptation!

	Kids				Bear	Bit rate			
QP L/R	Bit rate (Mbps)	Bit rate saving %	DMOS	Bit rate (Mbps)	Bit rate saving %	DMOS	saving (Avg. %)	DMOS (Avg.)	
23 / 23	5.4	0	5.0	16.9	0	5.0	0	5.0	
23 / 25	4.5	17	4.5	13.1	22	4.5	20	4.5	
23 / 26	4.2	22	4.4	11.9	30	4.4	26	4.4	
23 / 27	4.0	26	4.5	11.2	34	4.2	30	4.4	
23 / 28	3.8	30	4.2	10.8	36	4.1	33	4.2	
23 / 29	3.6	33	4.1	10.4	38	4.4	36	4.3	
23 / 30	3.5	35	4.0	9.9	41	4.0	38	4.0	
23/32	3.3	39	3.5	9.6	43	3.5	41	3.5	

© Nokia 2015

Results (first experiment) – Eye dominance

- If the hypothesis of eye dominance were to hold good, then when right eye dominant subjects received a high quality view on their right eye, they should have consistently rated the clip with a better score, and also vice versa for left eye dominant subjects.
- Results show no clear trend, and that eye dominance was invariant for our experiment (4L and 5R eye dominant subjects).
 DMOS differences were not significant.

Test sequence	R eye dominant DMOS_Diff	L eye dominant DMOS_Diff
Bear	0.09	-0.13
Kids	0.07	-0.04
Average	0.08	-0.09

17

© Nokia 2015

Results (second experiment)

- Streaming background tile(s) with asymmetric SNR video quality.
- Foreground view with symmetric quality.
- 12 subjects. Motion-to-high-quality delay approx 1 sec.
- Bit rate savings in the range 5-15%.

18

		Bear			Jet			Bit rate	DMOG	
	QP L/R		Bit rate saving %	DMOS	Bit rate (Mbps)	Bit rate saving %	DMOS	saving (Avg. %)	DMOS (Avg.)	
	27 / 27	19.9	0	5.0	8.1	0	5.0	0	5.0	
	27 / 28	18.9	5	4.7	7.8	4	4.4	5	4.6	
© Nokia 2015	27 / 29	18.2	9	4.5	7.5	7	4.0	8	4.3	
	27/30	17.6	12	4.3	6.7	17	4.1	15	4.2	

NOKIA

Conclusions

- Video SNR quality asymmetry can yield **streaming bit rate reductions of 30%** for a DMOS=4.4 in the foreground view
- ...and an **additional 5-15%** for the background view when using viewport dependent streaming of omnidirectional video.
- Such rate reductions may be used for **bandwidth adaptation** purposes.
- Their **joint usage** is advantageous for optimizing streaming bit rates (perhaps used together with other techniques)
- Eye dominance in not relevant, and could be neglected in practical deployments of streaming systems of stereo video.

