Optimal Design of Encoding Profiles for ABR Streaming

Yuriy A. Reznik, Karl O. Lillevold, Abhijith Jagannath, Justin Greer, and Jon Corley Brightcove, Inc., Seattle, WA, USA.

1

ACM MMSys | Packet Video Workshop, June 12, 2018, Amsterdam, The Netherlands

Copyright © 2018 Brightcove, Inc. All Rights Reserved.

Some facts from history

1948 – C. Shannon: rate-distortion theory, source & channel coding theorems 1970s – experiments with DCT, first image, video, and audio codecs 1980s – emergence of Internet

1995 – RealAudio – first Internet streaming audio system 1997 – RealVideo, SureStream, RealSystem G2 – first ABR streaming system

2007 – Move Networks, first HTTP-based ABR streaming
2009 – Apple HLS, Microsoft Smooth, Adobe HDS
2011 – MPEG DASH
2014 – CMAF

2015 – Netflix "Per-title Encoding": exploiting statistics of the source
2017 – Brightcove "Context Aware Encoding": exploiting statistics of the networks

. . .

. . .

. . .

real	Powered by RealSystem
RealMedia Clip Settings:	Clip Information:
Audio Format: Voice Only	Title:
/ideo Quality: Normal Motion Video 👱	Author
Preferences	Copyright: @2002
Farget Audience Settings:	Keywords:
☐ 28K Modems ☑ 56K Modems ☐ Single ISDN ☐ Dual ISDN	Description:
Corporate LAN 256K DSL/Cable Modem 384K DSL/Cable Modem 512K DSL/Cable Modem	Output File Details: Filename: Browse
RealAudio RealVideo	Export Range: Entire Project
Launch file in RealPlayer when finished. Show statistics while encoding.	Width: 720 Height 480 V Maintain Aspect Ratio
About Church Foulladate	

ABR encoding profile design dialog in RealSystem 8 (2001)

Examples of modern-era ABR encoding profiles

Apple HLS authoring specification:

Brightcove "High-Resolution" profile

HEVC/H.265	H.264/AVC	Resolution	Frame rate		media type	media	media	video	video	decoder	decoder	max frame	width	height	h264
145	145	416 x 234	≤ 30 fps			codec	bitrate	cap	size	rate	maan	····g···	profile		
350	365	480 x 270	≤ 30 fps		video	h264	450	771	1028	30	480	270	baseline		
660	730	640 x 360	≤ 30 fps		video	h264	700	1194	1592	30	640	360	baseline		
990	1100	768 x 432	≤ 30 fps		video	h264	900	1494	1992	30	640	360	main		
1700	2000	960 x 540	same as source		video	h264	1200	1944	2592	30	960	540	main		
2400	3000	1280 x 720	same as source		video	h264	1700	2742	3656	30	960	540	main		
3200	4500	same as source	same as source		video	h264	2500	3942	5256	30	1280	720	main		
4500	6000	same as source	same as source		video	h264	3500	5442	7256	30	1920	1080	high		
5800	7800	same as source	same as source		video	h264	3800	6192	8256	30	1920	1080	high		

Static vs Dynamic encoding ladders

All previously shown examples are so-called static encoding ladders

- they provide lists of resolutions and rates that are used for all content, sent to all networks

However, such approach fails to account for differences in characteristics of video content as well as network properties

differences in video RD performance:

A better approach is to design encoding ladders dynamically, accounting for characteristics of

- content \rightarrow content-aware encoding (aka per-title encoding)
- delivery context/model \rightarrow context-aware encoding

differences in networks and usage statistics

Source: Brightcove VideoCloud analytics, 2017

Per-title / Content-aware encoding

As noted by Netflix, when each title is encoded, this produces a composition of quality-rate functions for each resolution

and where the upper boundary of such functions form a convex hull.

The main idea of per-title encoding is to pick ladder points such that they belong to the convex hull.

This provides a method for finding best resolutions for any given target bitrate, but it does not, however, say how such bitrates should be placed, or how many of them are needed.

In other words, by itself, "per-title" approach does not result in a fully formed optimization problem!

Context-aware encoding = average quality optimization problem

Given a ladder of rates R_1, \ldots, R_n , quality-rate function Q(R), and network PDF p(R), we can define:

- buffering probability: $p(R < R_1) = \int_0^{R_1} p(R) dR$ (probability that playback is not possible, even at lowest rate)
- average quality: $\overline{Q}(R_1, ..., R_n, p) = Q(R_1) \int_{R_1}^{R_2} p(R) dR + Q(R_2) \int_{R_2}^{R_3} p(R) dR + ... + Q(R_n) \int_{R_n}^{R_{\text{max}}} p(R) dR$

A quality-optimal profile is set of rates R_1^*, \ldots, R_n^* , such that:

$$\overline{Q}(R_1^*, \dots, R_n^*, p) = \max_{\substack{R_{\min} < R_1 \le \dots \le R_n < R_{\max} \\ R_1 \le R_{1,\max}}} \overline{Q}(R_1, \dots, R_n, p)$$

An experiment

Content:

Resolution=720p25 Codec=H264 Quality metric=SSIM 3 sequences: "Easy", "Medium", "Complex"

Quality-rate models:

 $Q(R) = \frac{R^{\beta}}{\alpha^{\beta} + R^{\beta}}$

Content	α	β
Easy	0.0555	0.8550
Medium	0.0724	0.8016
Complex	0.1015	0.7364

Network	α	μ ₁	σ ₁	μ ₂	σ2
Network 1	0.584	0.996	0.564	2.554	1.165
Network 2	0.584	1.992	1.129	5.108	2.331

Copyright © 2018 Brightcove, Inc. All Rights Reserved.

7

Based on data from: J. Karlsson, and M. Riback. Initial field performance measurements of LTE, Ericsson review, 3, 2008.

Network models: $p(R) = \alpha \mathcal{N}_{\mu_1,\sigma_1}(R) + (1 - \alpha) \mathcal{N}_{\mu_2,\sigma_2}(R)$

Optimal profiles for given source and network models

Optimal profiles for Network 1:

Content	Ν	Profile bitrates [kbps]	Q_n	\overline{Q}	ξ [%]
	2	138, 803	0.909	0.867	6.58
Facy	3	100, 512, 1209	0.931	0.888	4.35
Edby	4	100, 411, 866, 1645	0.946	0.897	3.34
	5	100, 349, 694, 1155, 2087	0.955	0.902	2.76
Medium	2	175, 854	0.881	0.830	7.98
	3	100, 518, 1219	0.906	0.854	5.31
	4	100, 416, 876, 1663	0.924	0.866	4.00
	5	100, 354, 701, 1165, 2104	0.936	0.873	3.25
	2	234, 931	0.825	0.769	10.2
Complex	3	145, 590, 1304	0.867	0.797	6.96
	4	102, 431, 898, 1704	0.888	0.812	5.22
	5	100, 363, 716, 1183, 2134	0.904	0.821	4.16

Optimal profiles for Network 2:

Content	Ν	Profile bitrates [kbps]	Q_n	\overline{Q}	ξ [%]
	2	232, 1457	0.940	0.906	5.14
Eagy	3	116, 811, 2124	0.955	0.924	3.27
EdSy	4	100, 589, 1421, 2803	0.964	0.932	2.40
	5	100, 486, 1107, 1974, 3577	0.971	0.937	1.92
	2	293, 1549	0.920	0.878	6.23
Medium	3	158, 893, 2216	0.939	0.899	4.04
	4	100, 601, 1438, 2828	0.949	0.909	2.97
	5	100, 495, 1123, 1995, 3615	0.958	0.915	2.35
	2	391, 1685	0.887	0.833	7.98
Complex	3	232, 1018, 2358	0.910	0.857	5.29
	4	156, 712, 1569, 3001	0.924	0.869	3.94
	5	114, 537, 1179, 2060, 3727	0.935	0.877	3.11

- Q_n = quality at top rendition [SSIM]
- = average quality [SSIM] \overline{Q}
- = gap to quality achievable with infinite number of renditions [%] ξ

Key observation:

Optimal profiles designed for different sources and networks are different!

 $Q_n = Q(R_n),$ Q^*

$$\overline{Q} = Q(R_1) \int_{R_1}^{R_2} p(R) dR + Q(R_2) \int_{R_2}^{R_3} p(R) dR + \dots + Q(R_n) \int_{R_n}^{R_{\text{max}}} p(R) dR,$$
$$Q_n = Q(R_n), \qquad Q^* = \int_0^\infty Q(R) p(R) dR, \qquad \xi = \frac{Q^* - \bar{Q}}{Q^*} \cdot 100 \ [\%]$$

Sufficient number of encoding points

There are 2 criteria that can be utilized:

(1) Limit for quality at top rendition:

This shows that "easy" content can be encoded with much fewer renditions!

(2) Limit for quality gap:

for "complex" content as well.

9

This provides effective bound on the number of renditions

Quick summary

As shown earlier, given quality-rate function Q(R), information about network p(R), and client model, we can define the problem of design of encoding ladder as problem of maximizing average quality delivered to the clients:

$$\overline{Q}(R_1^*, \dots, R_n^*, p) = \max_{\substack{R_{\min} < R_1 \le \dots \le R_n < R_{\max} \\ R_1 \le R_{1,\max}}} \overline{Q}(R_1, \dots, R_n)$$

This problem clearly belongs to a class of **non-linear constrained optimization problems**.

In cases when average quality function $\overline{Q}(R_1, \dots, R_n, p)$ is differentiable w.r.t. R_1, \dots, R_n this problem is well known and can be solved by using existing numerical optimization techniques, such as sequential quadratic programming.

Further more, by using additional limits for quality of top rendition $Q(R_n)$, as well as quality gap $\xi(R_1, \dots, R_n, p)$ we can also bound the number of encoding points such that overall performance stays close to optimal.

In other words, the problem optimal design of encoding profiles is now fully defined.

(n, p)

Why use network statistics?

Q: Isn't it the case that the whole purpose of ABR streaming is to enable operation regardless of network characteristics?

A: Yes, and No.

Yes, the basic objective of ABR was to enable continuous playback if bandwidth is unknown or changing No: each operator knows a lot about its networks and users, and not using such statistics for improving quality of service is a crime! Especially for live events or services with known geographic distribution of users.

Examples of well-known networks- and usage- related phenomena:

Changes of network traffic: Changes of usage of devices/screens:

Source: Bloomberg BusinessWeek, May 5th 2013

Copyright © 2018 Brightcove, Inc. All Rights Reserved.

	andr	roid	Ú.	
	• •	▶•	• •	► •
AFRICA	.871 Mbps	1.05 Mbps	.789 Mbps	1.23 Mbps
ASIA	.697	1.07 Mbps	.892	.880 Mbps
EUROPE	1.38 Mbps	1.33 Mbps	1.61	1.83 Mbps
NORTH AMERICA NOT INCLUDING U.S.	1.24 Mbps	1.15 Mbps	1.36	1.61
SOUTH AMERICA	1.15 Mbps	.950 Mbps	1.23 Mbps	1.62
UNITED STATES	1.38 Mbps	1.40 Mbps	1.87 Mbps	2.66 Mbps

Source: Conviva VXR. 2015

= 100Kbps

Generalizations and extensions

Given:

 R_1, \ldots, R_n – list of ladder bitrates,

Q(R) – quality-rate function,

p(R) – network PDF, and

 $R_{\text{selected}}(B) = f(B, R_1, \dots, R_n, p) - \text{client model}$

We can compute probabilities of loading of each stream, and subsequently define and analyze average performance parameters of the streaming system. Average behavior of streaming system becomes fully characterized.

Moreover, for any client, we may expect that

 $R_{\text{selected}}(B) \rightarrow f(B, R_1, \dots, R_n, p)$ (pr.) so most results will hold.

Generalizations to configurations with multiple networks, devices, codecs, resolutions, etc. are also easily derivable.

	Parameter	
	Average bandwidth used for streaming	
	Average network bandwidth	
	Bandwidth utilization	
	Buffering probability	
	Average quality	
	Average quality limit	
)	Quality gap	ξ

Expression

$$\overline{R}(p, R_1, \dots, R_n) = \sum_{i=i}^n p_i R_i$$

$$\overline{B}(p) = \int_0^\infty R \ p(R) \ dR$$

$$\eta(p, R_1, \dots, R_n) = \frac{\overline{R}(p, R_1, \dots, R_n)}{\overline{B}(p)}$$

$$p_0(p, R_1) = \int_0^{R_1} p(R) \ dR$$

$$\overline{Q}(p, R_1, \dots, R_n) = \sum_{i=1}^n p_i Q(R_i)$$

$$Q^*(p) = \int_0^\infty Q(R) \ p(R) \ dR$$

$$(p, R_1, \dots, R_n) = \frac{Q^*(p) - \overline{Q}(p, R_1, \dots, R_n)}{Q^*(p)}$$

Thank you!

Contact: Yuriy Reznik Brightcove, Inc yreznik@brightcove.com

