

Quickly Starting Media Streams Using QUIC

Packet Video Workshop 2018

Şevket Arısu and Ali C. Begen

Agenda

- Motivation and our goal
- Previous work and our contributions
- Approach, setup and evaluation
- Results
- Conclusions

Motivation

QUIC: Multiplexed transport protocol over UDP

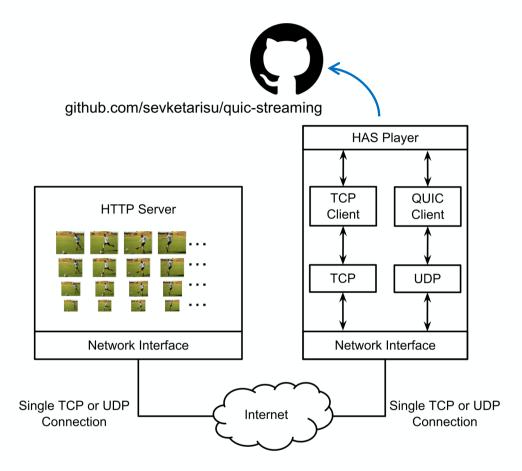
- Reduced handshake latency
- Improved congestion control
- Improved loss recovery
- Multiplexing streams

Can QUIC help improve viewer experience in HTTP adaptive streaming?

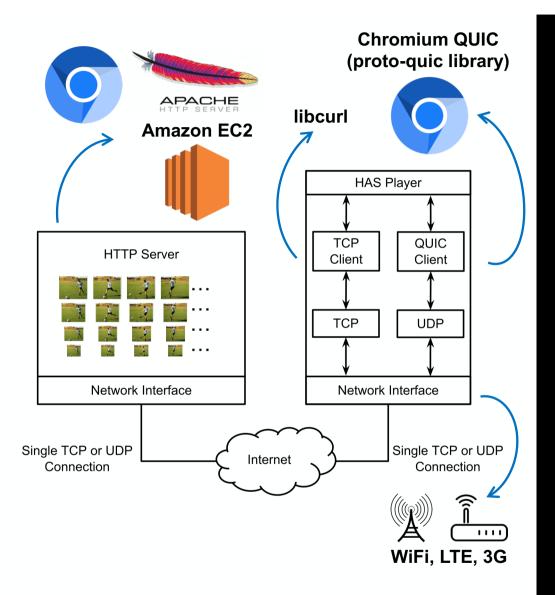
Can QUIC help us

- Start media streams more quickly
- Reduce seeking latency
- Cope better with frequent connection changes?

Previous Research


- Some reported
 - QUIC does not impact streaming performance
 - QUIC does not provide a boost to HAS
- Others reported
 - QUIC's 0-RTT performed better than the other protocols
 - QUIC provided better streaming, but only for high-quality video
- Google said QUIC reduced YouTube rebuffer rates by 15%

QUIC code evolves rapidly and 3rd-party implementations may not necessarily reflect protocol's real performance


Comparison between Our and Prior Work

	Tested QUIC Version	Used Official Google Server?	Wireless Networks ¹	Tested Different Algorithms?	Evaluated Frame Seeking?	Evaluated Conn. Switches?	Tested Live Video?
Timmerer [27]	v19	\checkmark	×	×	×	×	×
Szabo [26]	Latest ²	×	Only WiFi	×	×	×	×
Li [22]	Latest ³	\checkmark	×	×	×	×	×
Bhat [13]	Latest ²	×	Only WiFi	\checkmark	×	×	×
Zinner [29]	Latest ³	\checkmark	×	×	×	×	×
Kakhki [20]	v37	\checkmark	All	×	×	×	×
Ayad [10]	Latest ³	\checkmark	×	1	×	×	×
Our work	v39 ³	\checkmark	All	\checkmark	1	\checkmark	\checkmark

¹ WiFi, 4G/LTE and 3G, ² Based on the third-party implementation version at the time of research, ³ Latest at the time of research. Packet Video Workshop 2018

- Player Features
 - Python based
 - TCP and QUIC support integrated as subprocess
 - Scripted frame-seek (fastforward) ability
 - BASIC, SARA, BBA-2 adaptation algorithms
- Source Code
 - github.com/sevketarisu/quicstreaming

- Environment Setup
 - Public Internet
 - No traffic shaping
 - Each test repeated 10 times
- Server
 - Apache HTTP server on Amazon EC2
 - Located in Frankfurt, DE
- Client
 - Runs Google's proto-quic library
 - Located in Istanbul, TR
 - Connected via WiFi, LTE or 3G

Evaluated Metrics

- Average playback bitrate
 - Average of the bitrates of the downloaded segments
- Average wait time after seeking
 - Time from the frame-seek request to the playback of the requested media
 - A rule of thumb is to keep this time under two seconds
- Rebuffer rate

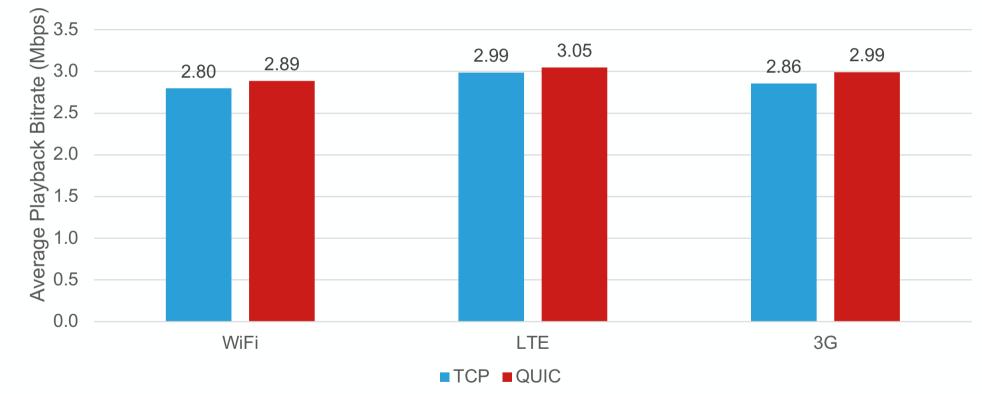
Rebuffer Rate = $\frac{\text{Rebuffer Time}}{\text{Rebuffer Time} + \text{Media Play Time}}$

Frame-Seek Scenarios

Frame-Seek (Fast-Forward) Feature Implemented in the Player

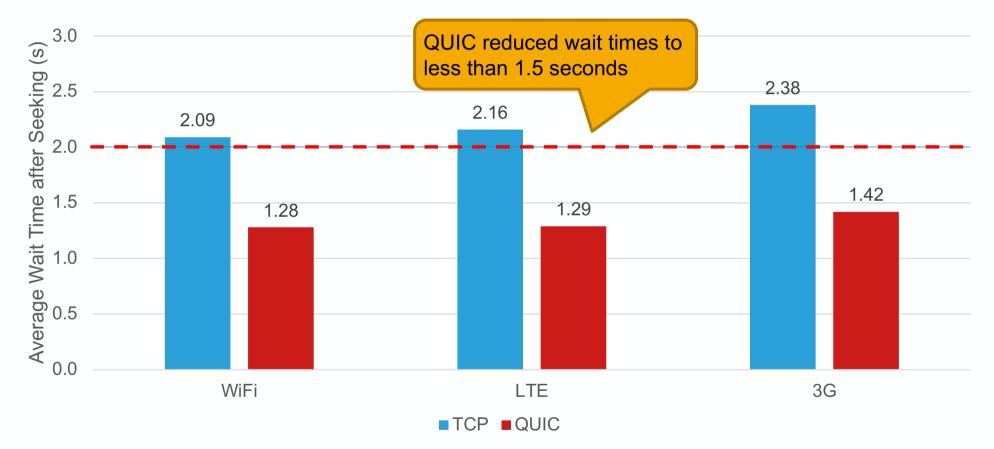
Viewer Action	Seek at	Seek to	Play Duration
Start at 0 s	-	-	40 s
Seek #1	40 s	100 s	50 s
Seek #2	150 s	200 s	80 s
Seek #3	280 s	350 s	70 s
Seek #4	420 s	500 s	100 s
Finish at 600 s	-	-	-
Total Viewed			340 s

QUIC provided a higher (or at least an equal) average playback bitrate in all cases and for all algorithms


Frame-Seek Scenario Results

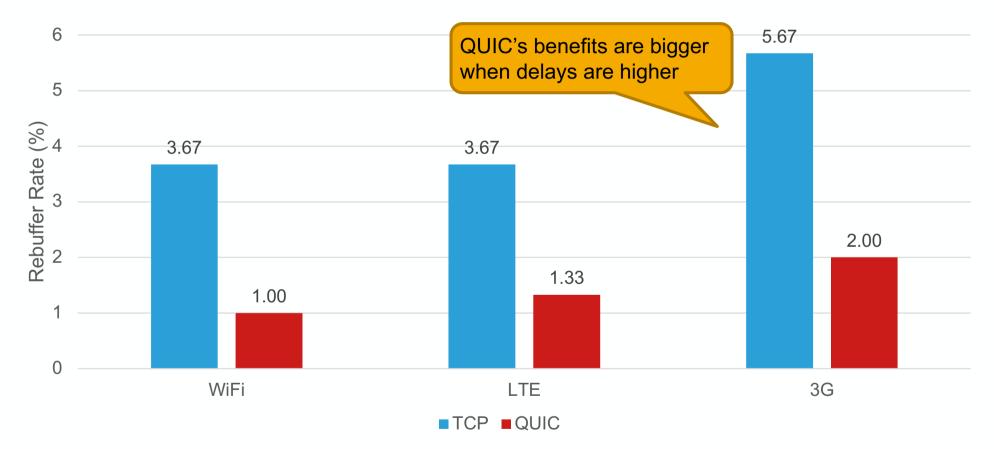
Max Bitrate Available: 3.9 Mbps

Results are averaged for BASIC, SARA and BBA-2 algorithms.


Packet Video Workshop 2018

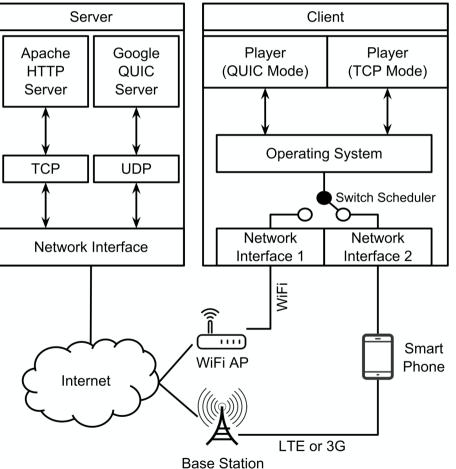
4.0

11


Frame-Seek Scenario Results

Results are averaged for BASIC, SARA and BBA-2 algorithms.

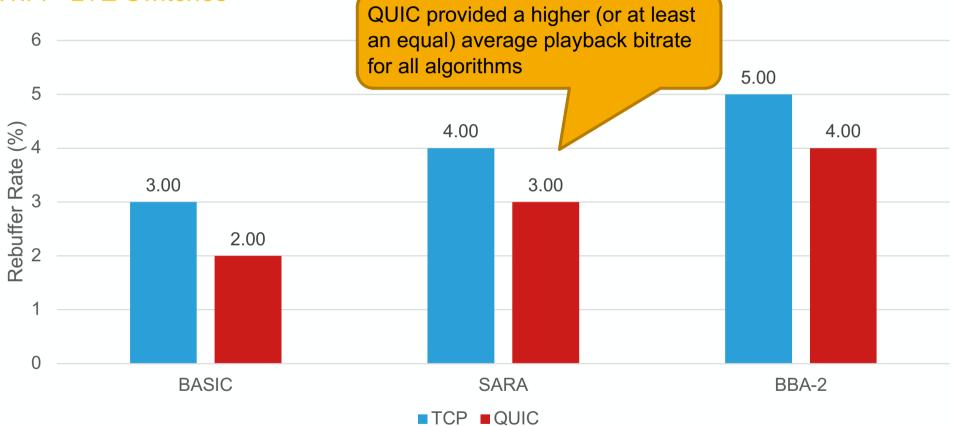
Packet Video Workshop 2018


Frame-Seek Scenario Results

Results are averaged for BASIC, SARA and BBA-2 algorithms.

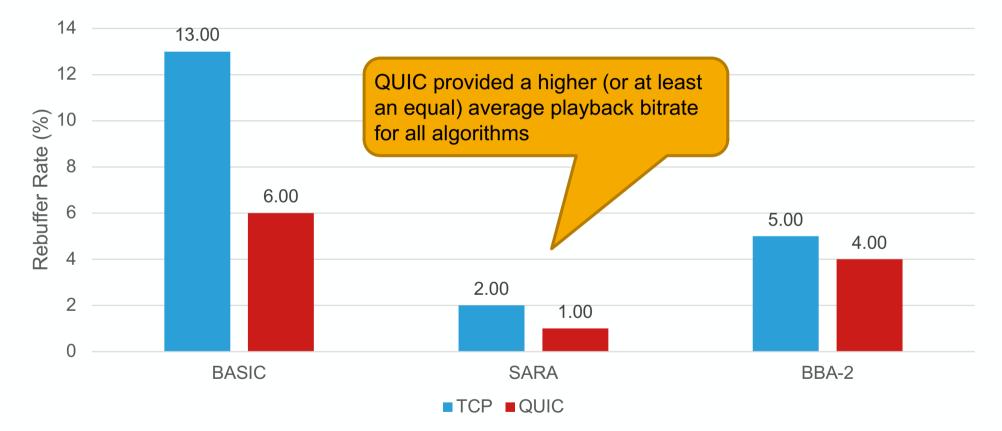
Packet Video Workshop 2018

Connection-Switch Simulation


Packet Video Workshop 2018

Connection-Switch Scenario

From Second	To Second	Connection Type
0	60	WiFi
60	180	LTE or 3G
180	300	WiFi
300	420	LTE or 3G
420	480	WiFi
480	540	LTE or 3G
540	600	WiFi


Connection-Switch Results

WiFi - LTE Switches

Connection-Switch Results

WiFi - 3G Switches

Conclusions

- QUIC reduces wait times and rebuffer rates without reducing playback bitrate
- QUIC outperforms TCP when frequent network changes occur
- QUIC's benefits are greater in networks with larger delay (e.g., early generation 3G networks)

QUIC is still evolving in the IETF; should there be significant changes, the tests will need to be repeated

- https://quicwg.org/
- https://github.com/quicwg

Thank You

Download and test our code at github.com/sevketarisu/quic-streaming

